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ABSTRACT 

Keywords: Rarefied Flows, Field Inversion and Machine 

Learning (FIML), Artificial Neural Networks, Standing 

acoustic shock, High Knudsen numbers. 

 

The Navier – Stokes equation, which is widely used to 

solve for a variety of flows is based on the assumption of 

fluid continuum. Thus, when this basic requirement is 

violated as in the case of rarefied flows, the Navier – 

Stokes equation fails to predict accurate results. The 

molecular level techniques which are currently used to 

solve for rarefied flows are computationally very 

expensive. In this work, we use two Machine Learning 

algorithms to speed up computations for these high 

Knudsen Number flows using available data. The first 

technique, called Field Inversion and Machine Learning 

(FIML), is used to find a spatial distribution of the 

functional correction to map the base model solution to 

experimental observations.  After successfully 

demonstrating the use of this technique on a scalar 
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ordinary differential equation, where the model equation 

has missing terms, this method is then extended to 

predict the structure of an acoustic shock. The second 

technique uses a Maximum Likelihood Estimation 

(MLE) approach to develop an artificial neural network 

to predict the flow of rarefied gas around a spherical 

body. The successful employment of these techniques to 

predict flows in the canonical cases considered 

demonstrates great potential for the use of Machine 

Learning algorithms to the study of more complex flows. 
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CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTION 

The Navier-Stokes equation is commonly used to solve 

for various fluid flows. However, one of the principle 

assumptions underlying the use of this equation is that of 

fluid continuum. The results obtained from the Navier –

Stokes equations, therefore, are accurate only when the 

Knudsen Number (Kn) of the fluid is very close to zero 

(<0.01). When the flow becomes rarefied and the 

number of fluid molecules per unit volume decreases, 

the distance between the molecules (or the mean free 

path (MFP)) also increases and thus the continuum 

assumption is no longer valid. Thus, we have to depend 

on other, better models for an accurate solution. Various 

models based on the fundamental Boltzmann equation 

give a good understanding of the flow physics, but since 

these models work at the molecular levels, computations 

become extremely expensive. While solving for very 

simple geometries in case of extremely rarefied fluid 
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may still be feasible, solving for flows in the transition 

regime (neither continues, nor very rarefied) becomes 

prohibitively expensive due to the huge number of 

molecules present. Thus, alternate models which give 

reasonable accurate answers while reducing 

computational expense are required. In this work, we try 

to do that through the use of Artificial Neural Networks. 

Two different techniques have been tried out – 1) Field 

Inversion and Machine Learning (FIML) which was 

introduced by Parish and Duraisamy in their paper titled 

“A paradigm for data-driven predictive modeling using field 

inversion and machine learning, 2016", and 2) Maximum 

Likelihood Estimation. The FIML method is initially 

verified on a case of heat transfer through a cylindrical 

rod, and then applied to modelling the structure of an 

acoustic shock. On the other hand, the MLE technique is 

used to obtain a simple forward model for flow of a 

rarefied gas around a spherical body. 
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1.2. OBJECTIVE OF THE WORK 

The objective of the work is to try of a few different 

statistical and machine learning algorithms to speed up 

computations for rarefied flows.  

The first technique, Field Inversion and Machine 

Learning developed my Parish and Dumaisamy has been 

initially validated on the case of heat transfer in a 

cylindrical rod, and then has been successfully used to 

obtain the temperature distribution across a standing 

shock wave.  

Next, a simple feedforward neural network has been 

developed to simulate the flow around a spherical body 

and it has been shown that the physics of the flow has 

been beautifully captured. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1. BACKGROUND 

Even with a tremendous increase in the computational 

power over the last few decades, simulations based on 

first principles for most practical still remains 

prohibitively expensive. As a result, we need to rely on 

coarse-models most of the times. However, derivation of 

these coarse-grain models or analytical solution often 

involves a lot of simplifying assumptions which then 

takes a toll on the accuracy and reliability of the 

solution. Thus, attempt at developing accurate solutions 

has been going on for a long time. 

The rise and growth of Artificial Intelligence and 

Machine Learning algorithms over the past few years has 

opened up new doors towards research in this area of 

developing better models. Work on developing surrogate 

models has been going on for a long time. Data has come 

out to be the most valuable resource, as machine learning 

enhanced data driven modelling is now taking the center 
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stage. Neural Networks are widely used to develop 

surrogate models based either on historical or 

experimental data. A relatively new method called 

Physics Inspired Neural Networks (PINN), which does 

data-driven modelling while taking into consideration 

the conservation laws governing various physical 

phenomena has been gaining widespread popularity, 

especially after Prof. Maziar Raissi came out with two 

papers on this method earlier this year.  

While carrying out fine-grain simulation for most 

practical cases is still not feasible, the computational 

power available today often allows us to carry out very 

accurate high-fidelity simulation of a few canonical 

cases. Concurrently, the experimental techniques have 

also developed to levels where pretty accurate 

information can be obtained at scales which are relevant 

to most practical cases. With this in mind, the technique 

of Field Inversion and Machine Learning (FIML) was 

introduced by Parish and Duraisamy in [1] in 2016. This 

method uses of Bayesian statistics to develop accurate 

forward models for physical phenomena by using 
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available data, as well as by taking advantage of any 

information that we have about the physical processes 

which actually take place. It involves developing a base 

model based on our limited understanding of the 

phenomenon, and then introducing a spatially and 

temporally varying stochastic correction term which is 

learned from existing data (usually of simple cases) 

using stochastic inverse methods.  

2.2. PROBLEM DEFINITION AND APPROACH 

While accurate solutions for several macro-scale laminar 

fluid mechanics phenomena can be obtained, the solution 

to turbulent flows and rarefied flows still remains an 

unsolved problem. Although scientists and 

mathematicians have come up with several models to 

simulate these phenomena, most accurate models are 

only valid for a few canonical cases only and cannot be 

used in most practical applications. In this work, we try 

to use two of the techniques mentioned above to target 

rarefied flows, more specifically the structure of a 
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standing acoustic shock and the slow flow of rarefied gas 

over a spherical body.  

Kun Xu in [2] gives the procedure to obtain a solution 

for the velocity and temperature distribution across a 

standing shock using the Navier-Stokes-Fourier 

equations. On comparing this solution with the Unified 

Gas Kinetic Scheme (UGKS) solution (which can be 

regarded as a true solution), it can be seen that the 

Navier-Stokes solution deviates significantly from the 

UGKS solution. Thus, an attempt has been made at using 

this Navier-Stokes equation as a base model in the FIML 

approach, and developing a more accurate posterior 

distribution by using the UGKS solution as the ground 

truth in order the check the feasibility of the FIML 

method for such scenarios. 

In the next case, we use a feedforward neural network to 

develop a surrogate model for the flow of rarefied gas 

around a spherical body and check its accuracy. The 

analytical solution for this particular case, given by 

Torrilhon in [3], with some Gaussian noise added to it, 

has been used as observed or experimental data.   
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CHAPTER 3  

METHODS  

3.1.FIELD INVERSION AND MACHINE LEARNING 

3.1.1. MATHEMATICAL SETTING 

Let us assume a physical system is governed by a set of 

non-linear equation (PDE or otherwise). Also, the truth-

model if the system can be represented in the following 

manner:  

𝑅𝑇(𝑸𝑇(𝒙, 𝑡)) = 0,     (1) 

where the operator 𝑅𝑇 contains the governing equation 

and the operator 𝑸𝑇 contains the model variables.  

Now, let us assume the physical phenomenon is 

modelled by the equation 

𝑅𝑚(𝑸𝑚(𝒙, 𝑡),𝑀) = 0 ,    (2) 

where 𝑅𝑚 ≠ 𝑅𝑇 and 𝑸𝑚 may also be different from 𝑸𝑇. 

The term M arises from our lack of understanding of the 

physical system. That is to say, if the exact value or form 

of M is inserted into the model equation, then the model 

equations can obtain very accurate values which satisfy 

the truth model. However, M is usually not determinable 
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from first principles, and thus, we resort to modelling M 

also as a function of the variables which we have 

considered in our model equation. Thus, the model 

equation can now be represented as  

𝑅(𝑸,𝑴(𝑸)) = 0     (3) 

In the present approach, we have replaced this model 

equation with a stochastic system  

𝑅 (𝑸,𝑴(𝑸, 𝛽(𝜔))) =  0,    (4) 

where 𝛽 is a random function which is found from data-

driven inversion/machine learning methods. Determining 

𝛽 is the main essence of this particular approach. 

 

3.1.2. APPLICATION OF THE FIML METHOD 

The challenge of creating the stochastic system lies in 

finding out a distribution function 𝛽. Model inaccuracies 

prevent us from directly finding the value of 𝛽. Hence, 

an inverse problem is posed to infer the distribution of 𝛽 

from the available data. Bayesian Inversion is used to 

obtain 𝛽 in the form of functional corrections. The 

functional corrections are obtained by calculating 𝛽 at 

every point in the computational domain. We start off by 
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assuming a value of 𝛽 (at all points in the domain, so 𝛽 

might be vector) with a certain level on confidence in 

our assumption. This gives the prior probability 

distribution of 𝛽, given by 𝑝(𝛽). Next we collect 

observational data, which may come either from 

experiments, or from high fidelity simulations. This data 

d is considered as the ground truth. Thus, given a value 

of 𝛽, there will be a certain probability that the dataset d, 

may be reproduced by the model equation that has been 

considered. This probability is the likelihood, and is 

given by 𝑝(𝒅|𝛽). Given 𝑝(𝛽) and 𝑝(𝒅|𝛽), there exists 

some probability of 𝛽 given d. This is the posterior 

probability of 𝛽 given d, and is given by the Bayes 

theorem as 

𝑝(𝛽|𝒅) =  
𝑝(𝒅|𝛽)𝑝(𝛽)

∫𝑝(𝒅|𝛽)𝑝(𝛽)𝑑𝛽
    (5) 

In principle, the above stochastic functions can follow 

any distribution. However, for the purpose of simplicity, 

we assume a Gaussian distribution for both, the prior as 

well as for the likelihood. With these assumptions, the 

problem of solving equation (5) reduces to finding the 
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maximum a posteriori (MAP) solution, which can be 

obtained by optimizing the following equation: 

𝛽𝑚𝑎𝑝 = argmin 0.5[(𝒅 − ℎ(𝛽))
𝑇
𝑪𝒎

−1(𝒅 − ℎ(𝛽)) +

(𝛽 − 𝛽𝑝)
𝑇
𝑪𝜷

−1(𝛽 − 𝛽𝑝)] (6) 

where 𝑪𝒎 and 𝑪𝜷 are observational and prior covariance 

matrices respectively. The observational covariance is 

obtained from the data d, and the prior covariance is 

chosen using domain knowledge. This term being 

minimized is called the cost function J. Thus. 

𝛽𝑚𝑎𝑝 = 𝑎𝑟𝑔min 𝐽     (7) 

The next step is to find the posterior of the covariance. In 

the linear case, this is given as the inverse of the Hessian 

found at the 𝛽𝑚𝑎𝑝 point. In the non-linear case, this turns 

out to be an approximation of the Hessian at the 𝛽𝑚𝑎𝑝 

point. Thus 

𝐂𝛽𝑚𝑎𝑝 = 𝐇
−1|𝛽𝑚𝑎𝑝      (8) 
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A standard method of obtaining realizations of 𝛽 

involves the Cholesky Decomposition of the posterior 

covariance matrix. Therefore,  

𝑹𝑹𝑻 = 𝐂𝛽𝑚𝑎𝑝 ,     (9) 

and then random samples of the posterior can then be 

drawn by 

𝛽 =  𝛽𝑚𝑎𝑝 + 𝑹𝒔,     (10) 

where 𝒔 is a vector, the components of which are 

independent standard normal variates.  

This inversion gives us values for 𝛽 which are varying in 

space as well as time (depending on the problem). If we 

put this value back in our model equation, we will get a 

fairly accurate value of the physical quantity, consistent 

with the observations.  

While carrying out this procedure, choosing the prior 

covariance plays an important part. The choice of the 

prior covariance often influences the final 𝛽 that we 

obtain. The chosen prior covariance can be taken to be 

good enough if the final value of 𝛽 gives values of the 



 

19 
 

physical quantity under consideration within a range of 

±standard deviation of the observed physical quantity 

values. Thus, finding the right covariance is an iterative 

process.  

If the inversions are performed over a large number of 

cases, problem specific inferences can be converted into 

general modelling knowledge via Supervised Machine 

Learning algorithms. These inferences can then be used 

to obtain a functional relationship of 𝛽(𝜂), where 𝜂(𝑸) 

are the input parameters for the model, or in some cases, 

the physical quantity itself may be directly obtained from 

these inferences. 

3.2.FEEDFORWARD NEURAL NETWORK USING 

MAXIMUM LIKELIHOOD EXTIMATION  

3.2.1. BASIC STRUCTURE AND WORKING 

Feedforward Neural Networks, also known as Multilayer 

Perceptron, are one of the most common architectures 

used in Machine Learning. These are mostly used for 

supervised machine learning algorithms, where we 

already know the output what our functions is supposed 
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to achieve. The underlying principle on which the 

feedforward network is based is the Universal 

Approximation Theorem, which states that a 

feedforward network with a single hidden layer and a 

finite number of neurons can approximate any 

continuous function to a prescribed level of accuracy. 

Higher the prescribed accuracy, more the number of 

neurons required. However, in most practical 

applications, instead of using a very large number of 

neurons in a single hidden layer, more than one hidden 

layer is used with significantly lesser number of neurons 

in each layer, thus reducing the total number of weights 

required.  

Thus, the goal of a feedforward network is to 

approximate a function y = f(x), where y is the value of 

the quantity we are trying to model, and x is a vector 

consisting of all the input parameters to the problem. 

When the network is properly trained, we would be able 

to get the correct value of y for the given conditions x. 

The basic structure of a Feedforward Neural Network 

with two hidden layers is shown below. 
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Figure 1: A feedforward neural network with two hidden layers 

Each neuron in one layer receives input from all the 

neurons/elements from the previous layer in the form of 

a linear combination, with a non-linearity on top of it. 

I.e.  𝑦𝑛𝑒𝑢𝑟𝑜𝑛 = 𝑔(𝑤. 𝑥 + 𝑏), where w is the weight 

vector, x is the input vector from the previous layer, and 

b is the bias term. The function g(z) is a non-linear 

function which acts on z. The commonly ones include 

sigmoid, ReLU, Tanh, etc.  

The network is initialized with a random set of weights. 

Every neural connection has its own set of weights. 

These weights are then learned during the network 

training process. This learning of weights happens 

through the popular Back Propagation algorithm. This 
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algorithm is basically nothing but optimization of the 

Cost Function using the chain rule of differentiation, and 

finding how the Cost Function J depends on each of the 

weights. Optimizing this Cost Function leads to the 

selection of weights which will then give the final output 

closest to what is expected. Once the network is 

satisfactorily trained, the network is then validated and 

tested on a different data set to see how good the 

learning really is. For detailed information on how the 

network actually functions and how it is trained, it is 

recommended to follow any standard book on Deep 

Learning. 

Coming to the Cost Function, several functions such as 

the Mean Squared Error function, Cross Entropy 

function, Exponential function, etc. are commonly used. 

However, in the Maximum Likelihood Estimation 

approach that we have followed, the Mean Squared Error 

(MSE) function, which is shown below, has been used.   

𝐽(𝒙|𝑊) =
0.5∑ (𝑦𝑗−𝑦̂𝑗(𝒙,𝑊))

2𝑁
𝑗=1

𝑁
,   (11) 
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where N is the number of training examples used, x is 

the vector consisting of input parameters, W is the 

weight matrix, 𝑦𝑗 is the observational data and 𝑦̂𝑗(𝒙,𝑊) 

is the value obtained from the network. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1. FIELD INEVRSION AND MACHINE 

LEARNING 

4.1.1. HEAT TRANSFER IN A ROD 

To validate the FIML method, we initially try it out on a 

scalar non-linear ordinary differential equation which 

resembles one-dimensional heat conduction with 

radiative and convective heat sources. This is the same 

case that has been considered by Parish and Duraisamy 

in [1], and it has been successfully replicated here. The 

ground truth is taken to be  

𝜕2𝑇

𝜕𝑧2
= 𝜀(𝑇)(𝑇∞

4(𝑧) −  𝑇4) + ℎ(𝑇 − 𝑇∞),  𝑧 ∈ [0,1]

       (12) 

where 𝜀 is the emissivity of the material and h is the 

convective coefficient. For the true process, the 

emissivity is give as  

𝜀(𝑇) = [1 + 5 sin (
3𝜋𝑇

200
) + 𝑒0.02𝑇 +𝒩(0, 0.12)] × 10−4

       (13) 
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The convective coefficient h is taken to be 0.5 SI units. 

To verify the efficiency of this framework, we shall 

assume that we do not know the true process, but only 

have the observational data (ground truth). Let us 

assume the process is modelled by the following 

equation 

𝜕2𝑇

𝜕𝑧2
= 𝜀0(𝑇∞

4(𝑧) −  𝑇4),    (14) 

where 𝜀0 = 10
−5. Let this be known as the base model. 

 

Figure 2: Solutions of the base model compared to the mean of the true 

process 
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From the figure above, it can be seen that the base model 

solutions do not accurately predict the actual 

temperatures in several cases. To improve this, we 

enhance the base model by introducing a correction 

function 𝛽 in it. Therefore, the new equation is 

𝜕2𝑇

𝜕𝑧2
= 𝛽(𝑧)𝜀0(𝑇∞

4(𝑧) −  𝑇4)    (15) 

The goal of this method is to obtain 𝛽(𝑧) from inversion 

and then feed it to a neural network to generalize to get 

𝛽 =  𝛽(𝑇, 𝑇∞) or 𝛽 =  𝛽(
𝑥

𝐿
, 𝑇∞).  

The entire process is summarised below. 

1. Start with a base model. This may not represent the 

actual physics of the process, and is usually based on 

deficient understanding of the phenomenon. 

2. Introduce a stochastic term 𝛽 in the base model, and 

with an assumed value of 𝛽 and prior covariance 𝑪𝜷, 

find the value of  𝛽𝒎𝒂𝒑 and the Hessian of the Cost 

Function at that point. 

3. Check if the assumed value of the prior covariance 

matrix is reasonable by finding the value of the 
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physical quantity (in this case, temperature) and 

seeing if the observed value of the physical quantity 

lies within ±2s of the one obtained from this model. 

4.  Sample the values of 𝛽 using the equations 

mentioned in the section 3.1. and 𝑪𝜷𝑚𝑎𝑝 . 

5. Solve this for a number of cases with varying input 

parameters (𝑇∞ in this case), and generate data to 

train a neural network. 

6. Using appropriate machine learning algorithms, train 

a network to find 𝛽 as a function of the input 

parameters. 

Since the inversion is the trickier part of this method, we 

will be concentrating more on that rather than on the ML 

algorithms which can be used. 

 

The inverse problem was solved for cases for 𝑇∞ going 

from 5K to 50K in steps of 5K. Both the ends of the rods 

were kept at 0K. The temperature distribution as well the 

variation of 𝛽𝒎𝒂𝒑 has been plotted for the case where 

𝑇∞ = 50𝐾. It can be seen that the base temperatures are 



 

28 
 

not very good agreement with the ground truth. 

However, the temperatures obtained by using the 𝛽𝒎𝒂𝒑 

in the base model are in very good agreement with the 

observed values of temperature. Figure 3 (R) shows the 

variation of 𝛽𝒎𝒂𝒑 along the length of the rod. As 

expected, the distribution is mostly symmetrical except 

for the stochastic variations. Since the base as well as the 

observed temperatures match at the rod ends (due to 

imposed boundary conditions), the 𝛽𝒎𝒂𝒑 value at these 

places is zero, and this is what is observed from the 𝛽𝒎𝒂𝒑 

distribution. Similar results are obtained for cases with 

other 𝑇∞ too. Thus, it can be seen this this method works 

fairly well, at least in this simple case. 

Figure 3: Posterior distribution of temperature (L); Variation of Bmap 

along the rod (R)  
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4.1.2. SHOCK STRUCTURE 

After the successful implementation of the inversion 

framework on a heat transfer case, we next move to the 

studying the structure and temperature variation across a 

standing acoustic shock. The ground truth used here is 

the data obtained from the Unified Gas Kinetic Scheme 

(UGKS) simulations, for which Kun Xu’s code [6] was 

used. The Navier – Stokes – Fourier equations is used as 

the base model. Thus, base model is 

(
𝜌
𝜌𝑢
𝐸
)

𝑡

+ (

𝜌𝑢

𝜌𝑢2 + 𝑝
(𝐸 + 𝑝)𝑢

)

𝑥

=  (

0
4

3
𝜇𝑢𝑥

5

4

𝜇

𝑃𝑟
𝑇𝑥 +

4

3
𝜇𝑢𝑢𝑥

)

𝑥

 (16) 

with the parameters 𝛾 = 5/3, 𝜇~𝑇0.8, 𝜇−∞ = 0.0005 

and the Prandtl Number Pr = 1.0 and Pr = 2/3. For a 

steady state solution, we put the time derivative = 0, and 

then integrate the above equations with respect to x. 

Thus, we get 

𝜌𝑢 = 𝐴      (17) 
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𝜌𝑢2 +
𝜌

2
𝑇 − 

4

3
𝜇𝑢𝑥 = 𝐵    (18) 

1

2
𝜌 (𝑢3 +

5

2
𝑢𝑇) −

5

4

𝜇

𝑃𝑟
𝑇𝑥 −

4

3
𝜇𝑢𝑢𝑥 = 𝐶  (19) 

where A, B and C are constants, and the following ODEs 

for the shock structure can be derived,  

𝑢𝑥 =
−3

4𝜇
[𝐵 − 𝐴𝑢 −  

𝐴𝑇

2𝜇
]    (20) 

𝑇𝑥 =  
4𝑃𝑟

5𝜇
[−

𝐴𝑢2

2
+
3

4
𝐴𝑇 − 𝐶 + 𝐵𝑢]   (21) 

where 𝜇 =  𝜇−∞(
𝑇

𝑇−∞
)0.8. The upstream and downstream 

Rankine – Hugoniot shock conditions are  

(

𝜌
𝑢
𝑝
)

−∞

= (

1.0
1.0

1
𝛾𝑀2⁄

)     (22) 

(

𝜌
𝑢
𝑝
)

∞

= 

(

 
 

(1+𝛾)𝑀2

2+(𝛾−1)𝑀2

𝛾−1

𝛾+1
+

2

(1+𝛾)𝑀2

(
2𝛾

𝛾+1
𝑀2 −

𝛾−1

𝛾+1
)

1

𝛾𝑀2)

 
 

   (23) 
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Figure 4: Comparison between the true temperatures and the temperatures 

found from the Navier-Stokes equation for M=8 

The ODEs were solved in MATLAB using the ODE45 

solver. Since the solver uses an adaptive grid, the 

solutions are pretty accurate. From the figure, we can see 

that there is a pretty large disagreement between the true 

temperature values and the solution obtained from the 

base model, especially in the region where the shock is 

formed. The boundary conditions, however, are the same 

for both the cases and these match well. 

The model equation is modified by multiplying the 

viscosity term by a stochastic parameter 𝛽, which is a 
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functions of the Mach Number M. However, for sake of 

simplicity, this term is not introduced in the main 

equations but only in the ODEs obtained after the first 

integration with respect to x. Therefore, the modified 

ODEs are 

𝑢𝑥 =
−3

4𝜇𝛽(𝑀)
[𝐵 − 𝐴𝑢 −  

𝐴𝑇

2𝜇
]    (24) 

𝑇𝑥 =  
4𝑃𝑟

5𝜇𝛽(𝑀)
[−

𝐴𝑢2

2
+
3

4
𝐴𝑇 − 𝐶 + 𝐵𝑢]  (25) 

The adaptive grid which the ODE45 solver uses is one of 

the reasons why it gives the solution to such a high 

degree of accuracy. If a fixed grid is used instead, the 

solutions obtained are unrealistic, and even diverge for 

some of the cases. Since solving the inverse problem 

requires solutions at pre-specified points, it was 

accomplished by actually solving with an adaptive grid 

and then interpolating at the specified location using the 

MATLAB function interp1. Although the cost function 

turned out to be pretty computationally heavy and 

extremely slow to converge, the modified model with the  
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Figure 6: Temperature plots from the UGKS data, the base model, 

and the improved model with Bmap for M = 8 

Figure 5: Temperature plots from the UGKS data, the base model, 

and the improved model with Bmap for M = 6 
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𝛽𝒎𝒂𝒑 solution is an extremely fast way to solve and 

obtain the properties of the standing shock.  

From the figures, it can be clearly seen that the 

temperature values obtained after the inversion process 

are significantly better than the base values obtained 

from the actual Navier – Stokes equations.  

The introduction of just one term in a set of 3 equations 

brought about a significant improvement in the 

temperature profile. It is thus likely that an introduction 

of another such parameter, probably with the Prandtl 

Number might bring on more improvement and rectify 

the divergence from the true value which occurs at the 

curved portions. 

 

4.2. MAXIMUM LIKELIHOOD ESTIMATION 

4.2.1. SLOW RAREFIED FLOW PAST A 

SPHERICAL BODY 

Although slow flow of rarefied gas over most over 

geometries does not have an analytical solution, the slow 

flow of rarefied gas over a spherical body has a more or 
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less analytical solution which is obtained from the 13-

Moments (R13) method. As shown by Torrilhon in [3], 

using the right slip boundary conditions, the velocity of 

rarefied flow around a sphere, in spherical coordinates is 

given by 

𝑣(𝑟, 𝜃) = (
(1 + 𝑎 (

𝑟

𝑅
)) sin 𝜃

−(1 + 𝑏 (
𝑟

𝑅
)) cos 𝜃

),   (26) 

where 

𝑎(𝑥) =
𝐶1

2𝑥
+

𝐶2

3𝑥3
−𝐾1(

6𝐾𝑛3

5𝑥3
+
2𝐾𝑛2

5𝑥2
) 𝑒

−√
5

9

(𝑥−1)

𝐾𝑛  (27) 

𝑏(𝑥) =
𝐶1

4𝑥
−

𝐶2

6𝑥3
+ 𝐾1(

3𝐾𝑛3

5𝑥3
+

𝐾𝑛2

√5𝑥2
+
𝐾𝑛

6𝑥
) 𝑒

−√
5

9

(𝑥−1)

𝐾𝑛  (28) 

And  𝑥 = 𝑟/𝑅      (29) 

The flow is axisymmetric, and hence the ∅ component of 

velocity has been dropped out. 

C1, C2 and K1 are constants of integration. The 

variation of these constant as a function of Kn is shown 

the figure below. 
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  Figure 6: Variation of constants K1 and K2 with Knudsen Number 

Figure 5: Variation of constants C1, C2 and C3 with Knudsen Number 
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The availability of an analytical solution made this the 

perfect case to try out because ground truth data can be 

easily generated. The ground truth or training data has 

been generated for a range of Knudsen Numbers, 

ranging right from 0 to 2, by obtaining the analytical 

solution at the predefined computational grid points, and 

then adding a 5% Gaussian Noise to the data. This is 

done in order to simulate the actual uncertainty present 

in actual measurements. Also, in order to keep the case 

experimentally realistic, the data has been generated only 

for 11 Knudsen Number.  

It has been assumed that for a slow flow, the velocity at 

all points in the domain scales linearly with the free 

stream inlet velocity. Therefore, the solution has been 

obtained for velocity which has been non-

dimensionalised with the free stream inlet velocity. The 

radial computational grid has also been non-

dimensionalised with the radius of the sphere. This non-

dimensionalizing allows for more generalization.  

The training of the Neural Network was done using the 

MATLAB Neural Network Toolbox. A single hidden 
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layer with 40 neurons was found to be sufficient for 

producing pretty good results. In the first case, inputs to 

the network were the location on the grid point and the 

Kundsen Number, and the output was the magnitude of 

velocity. In the second case, with the same inputs, the 

output was the r and theta components of velocity. While 

the second case was expected to give better results, the 

first case where the output was the direct magnitude of 

the velocity was found to be giving better results. A 

computational grid of 90x100 points was used, and with 

11 cases,  the total number of examples in the basic 

training data set was 99,000. This set was split in a 70%, 

15% and 15% into the training, validation and testing 

set. 

Figure 9 compares the solution obtained from the neural 

network (top) with the observed true solution (below) for 

a Knudsen Number of 0. In other words, this case 

represents the flow of a continuous viscous liquid around 

a sphere. This the same solution that we would obtain if 

we use the Navier-Stokes equation to find the velocity 

field. 
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Figure 7: Comparison of the solution predicted by the Neural 

Network (top) with the observed true solution (below) for Kn=0 

Figure 10 compares the solution obtained from the 

neural network (top) with the observed true solution 

(below) for a Knudsen Number of 1. A Knudsen Number 

of 1 signifies a pretty rarefied flow. The difference in the 

contours in figures 9 ans 10 are easily visible. At lower 

Knudsen Number, the no slip condition at the solid 

boundary seems to dominate. However, as the fluids 

becomes more and more rarefied, the layers of fluid in 

contact with the solid surface start moving (relative 
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motion). This effect is beautifully captured by the Neural 

Network that has been trained. It is also seen that the 

overall flow field has been accurately captured by the 

neural network. This is also apparent from small value of 

Mean Squared Error obtained for all the three sets (i.e. 

Training, Validatio nand Testing). The correlation plots 

also contain most of he points near the 45 degree line, 

showing. 

 

Figure 8: Comparison of the solution predicted by the Neural Network 

(top) with the observed true solution (below) for Kn=1 
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Figure 9: Correlation plots for the neural network that has been trained 
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CHAPTER 5  

CONCLUSION AND FURTHER WORK 

The feasibility of two methods, namely Field Inversion 

and Machine Learning, and Feedforward Neural 

Network (based a MLE) has been demonstrated by 

applying them on 2 different cases, the actual solutions 

to which were actually known. Although the work in this 

project concentrates primarily concentrates in inversion, 

further work on developing a suitable machine learning 

algorithm to learn and understand the physics of the 

problem will be extremely helpful, and is the ultimate 

goal of the FIML approach. With the addition of just a 

single stochastic parameter to a set of three equations, 

we were able to get a significant improvement in the 

output. Thus, there is reason to believe that the 

introduction of another such stochastic parameter 

combined with some other term (probably Pr) might give 

an even better result. This can be tried out in a further 

work. 
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In the case of flow around a spherical geometry, the 

network gives pretty good predictions about the velocity 

around the sphere. Further work on this front can involve 

mapping the flow around a sphere to flow around a 

different shape, either using Convolutional Neural 

Networks or by using mathematical transforms like the 

Joukowsky Transforms, and then using these two maps 

(rarefied flow around sphere + flow around sphere to 

flow around a different geometry) to obtain the velocity 

field for rarefied flow around objects of more complex 

shapes.  
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